Wurzelfunktionen und Arkussinus Dieser Beitrag enthält eine Lernerfolgskontrolle im Bereich von Wurzelfunktionen. Ziel des Beitrags ist es, das Wissen der Lernenden zu überprüfen. So führen diese eine Kurvendiskussion durch. Sie beschäftigen sich mit Stammfunktionen und berechnen die Fläche eines Dreiecks bzw. das Volumen eines Rotationskörpers. » mehr Mathematik Oberstufe+ Klassenstufe 11/12 Gymnasium/Berufliche Schulen
Kuboktaeder Der Kuboktaeder ist vorstellungsweise ein Würfel, dessen acht Ecken abgeschnitten wurden. Um diese Körperform z. B. aus einem Gesteinswürfel zu erhalten, kennzeichnet man die Mittelpunkte aller Würfelkanten und schneidet die dadurch markierten acht Eckpyramiden ab. Die besondere Form des Körpers bietet Anlass zur Untersuchung einiger geometrischer Fragestellungen, die von der elementaren räumlichen Geometrie bis zur analytischen Vektorgeometrie des Raumes reichen. Mit diesem Beitrag schulen Sie ... » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Die Euler‘sche Gerade In diesem Beitrag lernen Ihre Schülerinnen und Schüler die Euler‘sche Gerade kennen, die nach dem berühmten Schweizer Mathematiker Leonhard Euler (1707–1783) benannt wurde. Sie beschreibt eine Gerade durch drei charakteristische Punkte eines Dreiecks: den Umkreismittelpunkt, den Schwerpunkt und den Höhenschnittpunkt. Genauso wie Euler wird Ihre Klasse erstaunliche Eigenschaften der Punkte und Geraden entdecken und sie sowohl an konkreten Beispielen überprüfen als auch allgemein beweisen. » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Normalformen affiner Abbildungen Abbildungen, die Eigenschaften von Objekten wie Winkel, Parallelität und Teilverhältnisse erhalten, spielen in vielen Bereichen von Wissenschaft und Technik, etwa Bildbearbeitung oder Kartografie, eine wichtige Rolle. Es handelt sich dabei um die Translation, Drehung, Spiegelung und zentrische Streckung/Stauchung. Alle diese Operationen können mit affinen Abbildungen dargestellt werden. Wählt man für einen linearen Vektorraum eine feste Basis aus Einheitsvektoren, lassen sich affine Abbildungen ... » mehr Mathematik Oberstufe+ Klassenstufe 11/12/13 Gymnasium/Berufliche Schulen
Bestimmung von Teilverhältnissen mit affinen Koordinaten Koordinatenachsen, die nicht senkrecht aufeinanderstehen? Und auch noch verschiedene Einheiten auf den Achsen? Mit diesem Beitrag fordern Sie Ihre Schülerinnen und Schüler auf, Koordinatensysteme aus einem neuen Blickwinkel zu betrachten. Sie lernen, dass sie damit sogar schneller zum Ergebnis kommen können. Trotzdem greifen sie dabei auf Bekanntes wie Parametergleichungen und Schnittpunkte von Geraden zurück. » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12 Gymnasium/Berufliche Schulen
Den Mittelwert einer Funktion auf einem Intervall berechnen Wie viele Menschen infizieren sich wöchentlich durchschnittlich mit dem Corona-Virus? Dies ist nicht nur für die Johns-Hopkins-Universität interessant, sondern stellt eine aktuelle Anwendung des Mittelwerts von Funktionen dar. Vom Begriff des arithmetischen Mittels ausgehend erarbeiten sich die Lernenden in diesem Beitrag den Mittelwert von Funktionswerten. Dies führt sie schließlich zum Mittelwertsatz der Integralrechnung, dessen Beweis sie ebenfalls kennenlernen. Als Ausblick verweist der Beit... » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Produkt- und Kettenregel zum Ableiten von Funktionstermen verwenden In dieser Unterrichtseinheit üben Ihre Schülerinnen und Schüler anhand von zahlreichen Beispielen und Aufgaben das Ableiten von Funktionstermen mithilfe der Produkt- und der Kettenregel. Sichere Kenntnisse und Fertigkeiten zu diesen Verfahren helfen den Lernenden – neben dem inhaltlichen Verständnis des Ableitungsbegriffs –, wenn sie die Differenzialrechnung inner- oder außermathematisch anwenden. Solche eingeübten Vorgehensweisen helfen den Jugendlichen später im Berufsleben, da sie schon an da... » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Änderungsrate beim Flächeninhalt von Dreiecken Beim Parkett verlegen geht es um jeden Millimeter. Besonders verwinkelte Räume und komplizierte Muster stellen eine Herausforderung dar. Bei einer strahlenförmigen Verlegung bilden sich ähnliche rechtwinklige Dreiecke. Wie sich ihr Flächeninhalt verändert, untersuchen Ihre Schülerinnen und Schüler in diesem Beitrag. Insbesondere erarbeiten sie sich zum Lösen und Überprüfen der Aufgaben den Umgang mit einer dynamischen Geometriesoftware. » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Änderungsrate beim Füllstand einer Talsperre Die Dürre hatte die vergangenen Jahre viele Teile Europas fest im Griff. Sie lässt die Pflanzenwelt verkümmern, senkt den Grundwasserspiegel und den Wasserstand von Flüssen und Stauseen. Dadurch produzieren auch Wasserkraftwerke weniger „grünen“ Strom. Mit den Werkzeugen der Analysis untersuchen Ihre Schülerinnen und Schüler innerhalb dieses aktuellen Themas die Auswirkungen auf den Füllstand einer Talsperre. » mehr Mathematik Oberstufe+ Klassenstufe 10/11/12/13 Gymnasium/Berufliche Schulen
Konfidenzintervalle Wie viel Prozent der Wähler werden sich bei der nächsten Bundestagswahl für die FDP entscheiden? Wie hoch wird die Wahlbeteiligung ausfallen? Solchen und ähnlichen Fragen können Ihre Schülerinnen und Schüler in diesem Beitrag statistisch auf den Grund gehen. Mit bekannten relativen Häufigkeiten aus Stichproben (etwa Umfragen) berechnen die Lernenden Konfidenzintervalle oder bestimmen bei bekannten Wahrscheinlichkeiten die zugehörigen Prognoseintervalle. Neben den genauen Formeln bietet dieser Be... » mehr Mathematik Oberstufe+ Klassenstufe 11/12/13 Gymnasium/Berufliche Schulen